
www.anl.gov

Optimization Methods
For Deep Learning

Dr. Bethany Lusch
Assistant Computer Scientist
Argonne Leadership Computing Facility
blusch@anl.gov

August 7, 2020
ATPESC

Argonne Leadership Computing Facility2

What is Optimization?

Example: Minimize prediction error

“objective” or “loss” function

Underneath most machine learning problems is an optimization problem

Argonne Leadership Computing Facility3

Typical Deep Learning Formulation

mean squared error, averaging over the examples !(#), !(&), … , !(()

“predictor” function: the neural network
Where) are trainable parameters

min)
1
./01#

(
[ℎ !(0);) − 6(0)]&

Correct label for each example

Recall: ℎ has that special layered form, such as:

ℎ !;) = 8(9 & 8 9 # ! + ; # + ; &)

Argonne Leadership Computing Facility4

Types of Optimization
D

es
pe

ra
tio

n

• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

More time on formulating
problem to fit these categories

More time on optimization algorithm

Roughly…

Argonne Leadership Computing Facility5

Differentiable Optimization
D

es
pe

ra
tio

n

• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

Deep learning usually here
• Objective function non-convex
• So local minima problematic

• Technically have 2nd derivatives, but
too expensive

Argonne Leadership Computing Facility6

Differentiable Optimization
D

e
s
p

e
ra

ti
o

n

• Linear

• Quadratic

• Convex

• Have 2nd derivs

• Have gradients

• General

Deep learning usually here

• So typically use stochastic gradient

descent

• In the optimization zone of: “our

problem doesn’t have great

properties, so spend time on the

difficult optimization”

Argonne Leadership Computing Facility7

Choosing form of neural network
• Details of ℎ "; $, i.e.

• Choosing “neural architecture” or “function family”

ℎ "; $ = %(& ' % & (" + * (+ * ')

Cons of deep learning:
• Non-convex, so can be hard to find best parameters
• Can be overly flexible/complicated

Pros of deep learning:
• Universal approximation theorem: can approximate “any” function arbitrarily well
• Hierarchical structure saves parameters

Good parameters might exist,
but do you find them?

Argonne Leadership Computing Facility8

Bias vs. Variance

High variance

overfitting

High bias Low bias, low variance

underfitting balanced

A major theme of machine learning!
Pictures from Kyle Felker, produced from code in scikit-learn documentation

Argonne Leadership Computing Facility9

To Check for Overfitting vs. Underfitting

Rule #1: MUST hold out some data and check error at very end

“test” data

Common:
• Randomly split data 70% training, 20% validation, 10% test
• Use training data to fit parameters of network
• Use validation data to compare options (like learning rate)
• Report test error at end of project

If you peek, not really reporting generalization error!

Argonne Leadership Computing Facility10

Choosing Hyperparameters
• Ex: learning rate, batch size, number of layers
• More at “Hyper-parameter Optimization” talk
• Common to try variety and choose “best” combination

• Typically: lowest validation error in fixed number of epochs
• Or fixed time…
• If targeting particular error, could explore best time-to-solution

DO NOT consult your test error!!

Argonne Leadership Computing Facility11

To Check for Overfitting vs. Underfitting

If training error too high → underfitting

If training error << validation error → overfitting

Monitor training and validation error…

Argonne Leadership Computing Facility12

Extrapolation
Rule #2: DO NOT extrapolate to inputs outside literal training domain

mathematical sense of word

Cautionary example: Learn f(x) = x, for 1-D x
Noiseless training data on [-1, 1]
Trained tiny 6-parameter network, can write down perfect weights
Excellent val. error in [-1, 1] does not lead to extrapolation ability outside [-1, 1]

https://arxiv.org/abs/1911.02710

Argonne Leadership Computing Facility13

Gradient Descent

Picture source: Divakar Kapil in “Stochastic vs Batch Gradient Descent”

Argonne Leadership Computing Facility14

Types of Gradient Descent
(in the context of summing a loss over examples)

Stochastic GD: use one example per step

Batch GD: use all examples every step

Mini-batch GD: use a subset each step

One epoch: use each example once

Argonne Leadership Computing Facility15

Types of Gradient Descent

Stochastic GD: use one example per step

Batch GD: use all examples every step

Mini-batch GD: use a subset each step

Each step is accurate but expensive

Each step is noisy but fast

Happy medium?

Very common in deep

learning, but often call

it SGD

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Even better: shuffle data

between epochs so mini-

batches change

Argonne Leadership Computing Facility16

Learning Rate

Learning rate is “step size”
• Too big: overshoot
• Too small: very slow
• (But might want to escape local

minima)

Li, et al. “Visualizing the Loss Landscape of Neural Nets” NeurIPS 2018

http://cs231n.github.io/neural-networks-3/

Argonne Leadership Computing Facility17

Batch Size

Mini-batch GD: use a subset each step

batch size

Choosing a batch size:
• Time per epoch

• large often fast due to vectorization
• But accuracy!

• Too small can be noisy steps
• Too big can be get stuck in local minima

Argonne Leadership Computing Facility18

Convergence
Monitor training & validation error

If validation error plateaued (or getting worse!) →

• Often “early stopping” (save best so far)

• Or tweak learning rate

• But might want to wait: could jump into different local minimum

https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-
machine-learning-820b091dc42

Validation error

https://stats.stackexchange.com/questions/257843/con
stant-error-during-training

Argonne Leadership Computing Facility19

Variant: Adam Optimizer
Popular improvement on GD: Adam optimizer
• Separate learning rate for each weight
• Momentum: uses moving average of the gradient
• Also incorporates squared gradients

Cool exploration/visualization of momentum: https://distill.pub/2017/momentum/

(For those familiar: Adam combines the best properties of AdaGrad, momentum, and RMSProp)

Argonne Leadership Computing Facility20

Regularization
• Common way to avoid overfitting: regularization
• Most common: L2 regularization

error regularization

balance

Roughly: big coefficients/weights correspond to large variation

Argonne Leadership Computing Facility21

Dropout

TensorFlow for Deep Learning by Bharath Ramsundar; Reza Bosagh Zadeh Figure 4-8

Probability keep node = p
• Apply during training time

only
• Can define layer-by- layer
• Scale the surviving

activations by 1/p
• Network has to be

“resilient”

Adapted from Kyle Felker’s slide

Argonne Leadership Computing Facility22

Summary
• Deep learning is an optimization problem
• Choices affect

• Can the neural network represent your data?
• Can the optimization algorithm find that good representation?

• More on efficiency this afternoon…
• Does that representation generalize?

Two rules!
Rule #1: MUST hold out some data and check error at very end

Rule #2: DO NOT extrapolate to inputs outside literal training domain

mathematical sense of word

Argonne Leadership Computing Facility23

Thank You!
Any questions?

Thinking ahead to this afternoon: how would you parallelize gradient descent?

